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Abstract. We consider some double binomial sums related with the Fibonacci,

Pell numbers and a multiple binomial sums related with the generalized order-k

Fibonacci numbers. The Lagrange-Bürmann formula and other known tech-
niques are used to prove them.

1. Introduction

The generating function of the Fibonacci numbers Fn is
∞∑

n=0

Fnx
n =

x

1− x− x2
.

Similarly, the generating function of the Pell numbers Pn is
∞∑

n=0

Pnx
n =

x

1− 2x− x2
.

The generalized order-k Fibonacci numbers f (k)
n are defined by

f (k)
n =

k∑
i=1

f
(k)
n−i for n > k

with initial conditions f (k)
j = 2j−1 for 1 ≤ j ≤ k.

For example, when k = 3, the generalized Fibonacci numbers f (3)
n are reduced

to the Tribonacci numbers Tn defined by

Tn = Tn−1 + Tn−2 + Tn−3

with T1 = 1, T2 = 2 and T3 = 4, for n > 3.
For these number sequences, we recall the combinatorial representations due to

[2, 3, 5]:
n∑

i=1

(
n− i
i− 1

)
= Fn, (1.1)

b(n−1)/2c∑
i=1

(
n

2i+ 1

)
2r = Pn, (1.2)

n∑
i=0

n∑
j=0

(
n− i
j

)(
n− j
i

)
= F2n+3. (1.3)
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2 EMRAH KILIÇ AND HELMUT PRODINGER

Among the formulas (1.1–1.3), the last formula seems to be different from first two
identities just above since it includes double sums, see [2]. The authors of the above
cited papers use a combinatorial approach to prove these results. For many similar
identities, we refer to [6].

In this paper, we shall derive some new double binomial sums related with the Fi-
bonacci, Pell and generalized order-k Fibonacci numbers and then use the Lagrange-
Bürmann formula and well known other techniques to prove them.

The Lagrange-Bürmann formula is a very useful tool if one knows a series ex-
pansion for y(x) but would like to obtain the series for x in terms of y. We recall
the formula (for details see [1, 4]): Suppose a series for y in powers of x is required
when y = xΦ(y). Assume that Φ is analytic in a neighborhood of y = 0 with
Φ(0) 6= 0. Then

x = y/Φ(y) =
∞∑

n=1

any
n, a1 6= 0.

Then the two (equivalent) version of the Lagrange(-Bürmann) inversion formula
can be written as

F (y) = F (0) +
∞∑

n=1

xn

n!

[
dn−1

dyn−1

(
F ′(y)Φn(y)

)]
x=0

or
F (y)

1− xΦ′(y)
=
∞∑

n=0

xn

n!

[
dn

dyn

(
F (y)Φn(y)

)]
x=0

.

We would like to rephrase this using the notation of the “coefficient–of” operator:

F (y)
1− xΦ′(y)

=
∞∑

n=0

[yn]
(
F (y)Φn(y)

)
· xn;

we will use it in this form.

2. Double Binomial Sums

We start with a result related to Fibonacci numbers:

Theorem 1. For n > 0,

F4n−1 =
∑

0≤i,j≤n

(
n+ i

2j

)(
n+ j

2i

)
.

Proof. We start from

[y2j ](1 + y)n+i =
(
n+ i

2j

)
and compute

S =
n∑

i=0

(1 + y)n+i

(
n+ j

2i

)
=
∑
i≥0

(1 + y)n+i/2

(
n+ j

i

)
1 + (−1)i

2

=
[(

1 +
√

1 + y
)j+n

+
(

1−
√

1 + y
)j+n

]
(1 + y)n

2
,
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here the desired sum takes the form:
n∑

j=0

[y2j ]
[(

1 +
√

1 + y
)j+n

+
(

1−
√

1 + y
)j+n

]
(1 + y)n

2

=
∑
j≥0

[y2j ]
[(

1 +
√

1 + y
)j+n

+
(

1−
√

1 + y
)j+n

]
(1 + y)n

2

=
∑
j≥0

[y2j ]
(

1 +
√

1 + y
)j+n (1 + y)n

2
+
∑
j≥0

[y2j ]
(

1−
√

1 + y
)j+n (1 + y)n

2

=
∑
j≥0

[yj ]
(

1 +
√

1 + y
)j/2+n (1 + y)n

2
1 + (−1)j

2
+
∑
j≥0

[y2j ]
(

1−
√

1 + y
)j+n (1 + y)n

2
.

Let us consider the first sum:∑
j≥0

[yj ]
(

1 +
√

1 + y
)j/2+n

(1 + y)n.

This is of the form ∑
j≥0

[yj ]F (y)Φ(y)j

with

F (y) =
(

1 +
√

1 + y
)n

(1 + y)n and Φ(y) =
√

1 +
√

1 + y.

The Lagrange-Bürmann formula can now be applied to this sum. The general
formula is given by ∑

j≥0

[yj ]F (y)Φ(y)j · xj =
F (y)

1− xΦ′(y)
.

We need the instance x = 1 here, and the variables x and y are linked via y = xΦ(y).
Notice that Φ(y) must be a power series in y with a constant term different from
zero. Therefore

y =
1 +
√

5
2

, F (α) =
(

7 + 3
√

5
2

)n

,

Φ′(α) =
3−
√

5
8

,
1

1− Φ′(α)
= 2

(
1− 1√

5

)
.

So our evaluation is

2
(

1− 1√
5

)(
7 + 3

√
5

2

)n

.

The second term is∑
j≥0

[yj ]
(

1 +
√

1 + y
)j/2+n+1/2

(1 + y)n(−1)j .

This is the instance x = −1, which translates to y = −1 and so the third term is

F (−1)
1 + Φ′(−1)

= 0.
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The last sum is∑
j≥0

[y2j ]
(

1−
√

1 + y
)j+n

(1 + y)n =
∑
j≥0

[y2j ]yj+n

(
1−
√

1 + y

y

)j+n

(1 + y)n

=
∑
j≥0

[yj ]yn

(
1−
√

1 + y

y

)j+n

(1 + y)n.

This is again of the form ∑
j≥0

[yj ]F (y)Φ(y)j

with

F (y) =
(

1−
√

1 + y
)n

(1 + y)n and Φ(y) =
1−
√

1 + y

y
.

We need the instance x = 1 here, and the link is

y = x

(
1−
√

1 + y

y

)
,

which means

y =
1−
√

5
2

, F (β) =
(

7− 3
√

5
2

)n

and
1

1− Φ′(α)
= 1 +

1√
5
.

So our evaluation is (
1 +

1√
5

)(
7− 3

√
5

2

)n

.

Altogether[(
1− 1√

5

)(
7 + 3

√
5

2

)n

+
(

1 +
1√
5

)(
7− 3

√
5

2

)n
]

1
2

=
α4n−1 − β4n−1

√
5

= F4n−1,

as desired.

Theorem 2. For n > 0,

F4n+1 =
∑

1≤i,j≤n+1

(
n+ i

2j − 1

)(
n+ j

2i− 1

)
.

Proof. Since [
y2j−1

]
(1 + y)n+i =

(
n+ i

2j − 1

)
and

S =
n+1∑
i=1

(1 + y)n+i

(
n+ j

2i− 1

)
=
∑
i≥0

(1 + y)n+(i+1)/2

(
n+ j

i

)
1− (−1)i

2

=
[(

1 +
√

1 + y
)j+n

−
(

1−
√

1 + y
)j+n

]
(1 + y)n+1/2

2
,
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here the desired sum takes the form:
n+1∑
j=1

[y2j−1]
[(

1 +
√

1 + y
)j+n

−
(

1−
√

1 + y
)j+n

]
(1 + y)n+1/2

2

=
∑
j≥1

[y2j−1]
[(

1 +
√

1 + y
)j+n

−
(

1−
√

1 + y
)j+n

]
(1 + y)n+1/2

2

=
∑
j≥1

[y2j−1]
(

1 +
√

1 + y
)j+n (1 + y)n+1/2

2

−
∑
j≥1

[y2j−1]
(

1−
√

1 + y
)j+n (1 + y)n+1/2

2

=
∑
j≥0

[yj ]
[(

1 +
√

1 + y
)j/2+n+1/2

]
(1 + y)n+1/2

2
1− (−1)j

2

−
∑
j≥1

[y2j−1]
(

1−
√

1 + y
)j+n (1 + y)n+1/2

2
.

Let us start with one term in the above sum:∑
j≥0

[yj ]
(

1 +
√

1 + y
)j/2+n+1/2

(1 + y)n+1/2.

This is of the form ∑
j≥0

[yj ]F (y)Φ(y)j

with

F (y) =
(

1 +
√

1 + y
)n+1/2

(1 + y)n+1/2 and Φ(y) =
√

1 +
√

1 + y.

This is the instance x = 1, which translates to

y =
1 +
√

5
2

, F (α) = α4n+2

and

Φ′(α) =
3−
√

5
8

,
1

1− Φ′(α)
= 2

(
1− 1√

5

)
.

So our evaluation is:

2
(

1− 1√
5

)
α4n+2.

The second term is∑
j≥0

[yj ]
(

1 +
√

1 + y
)j/2+n+1/2

(1 + y)n+1/2(−1)j .

This is the instance x = −1, which translates to y = −1 and so the second term is

F (−1)
1 + Φ′(−1)

= 0.
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Finally the last term is of the form:∑
j≥1

[y2j−1]
(

1−
√

1 + y
)j+n

(1 + y)n+1/2

=
∑
j≥1

[y2j−1]yj+n

(
1−
√

1 + y

y

)j+n

(1 + y)n+1/2

=
∑
j≥0

[yj ]yn+1

(
1−
√

1 + y

y

)j+n

(1 + y)n+1/2.

This is of the form: ∑
j≥0

[yj ]F (y)Φ(y)j

with

F (y) =
(

1−
√

1 + y
)n

(1 + y)n+ 1
2 y and Φ(y) =

1−
√

1 + y

y
.

This is the instance x = 1, which translates to y = β = 1−
√

5
2 . Thus

F (β) = −β4n+2, Φ′(β) = −1−
√

5
4

,
F (β)

1− Φ′(β)
= −

(
1 +

1√
5

)
β4n+2.

So our evaluation is[(
1− 1√

5

)
α4n+2 +

(
1 +

1√
5

)
β4n+2

]
1
2

= F4n+1,

as claimed.

Theorem 3. For n > 0,

F4n =
n∑

i=0

n∑
j=0

(
n+ i

2j − 1

)(
n+ j

2i

)
,

F4n−3 =
n∑

i=0

n∑
j=0

(
n+ i

2j + 1

)(
n+ j

2i+ 1

)
.

Again by using the Lagrange-Bürmann formula, Theorem 3 can be similarly
proved.

Theorem 4. For n > 0,

F2n+2 + Fn+1

2
=

∑
0≤i,j≤n

(
n− i

2j

)(
n− 2j
i

)
.

Proof. First, we replace i by n− i and get∑
0≤2j≤i≤n

(
i

2j

)(
n− 2j
i− 2j

)
.
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Now we compute the generating function of it:∑
n≥0

zn
∑

0≤2j≤i≤n

(
i

2j

)(
n− 2j
i− 2j

)
=

∑
0≤2j≤i

(
i

2j

)
zi

(1− z)i+1−2j

=
∑
j≥0

z2j(1− z)2j

(1− 2z)1+2j
=

1− 2z
(1− z − z2)(1− 3z + z2)

=
1
2

1
1− z − z2

+
1
2

1
1− 3z − z2

,

which is the generating function of the numbers (F2n+2 + Fn+1)/2.

The following results are similar:

Theorem 5. For n > 0,

F2n =
n∑

i=1

n∑
j=1

(
n− i
j − 1

)(
n− j
i− 1

)
,

F2n−1 =
∑

0≤j≤i≤n

(
n

i− j

)(
n− i
j

)
.

Theorem 6. For n > 0,

F2n + 1 =
n∑

i=0

F2i−1 =
∑

0≤i≤j≤n

(
n− i
j

)(
j

2i

)
. (2.1)

Proof. Multiplying the right hand side of (2.1) by zn and summing over n, we get

S =
∑
n≥0

zn
∑

0≤i≤j≤n

(
n− i
j

)(
j

2i

)
=
∑

0≤i≤j

∑
h≥0

zh+i+j

(
h+ j

j

)(
j

2i

)

=
∑

0≤i≤j

(
j

2i

)
zi+j

∑
h≥0

zh

(
h+ j

j

)
=

∑
0≤2i≤j

(
j

2i

)
zi+j 1

(1− z)j+1

=
∑
i≥0

z3i

(1− 2z)2i+1
=

1− 2z
(1− z)(1− 3z + z2)

=
z

1− 3z + z2
+

1
1− z

,

which is the generating function of the numbers F2n + 1.

For the Pell numbers, we give the following result:

Theorem 7. For n ≥ 0,

Pn+1 =
∑

0≤i≤j≤n

(
n− i
j

)(
j

i

)
. (2.2)

Proof. Multiplying the right hand side of (2.2) by zn and summing over n, we get

S =
∑
n≥0

zn
∑

0≤i≤j≤n

(
n− i
j

)(
j

i

)
=
∑

0≤i≤j

∑
h≥0

zh+i+j

(
h+ j

j

)(
j

i

)

=
∑

0≤i≤j

(
j

i

)
zi+j

∑
h≥0

zh

(
h+ j

j

)
=
∑

0≤i≤j

(
j

i

)
zi+j 1

(1− z)j+1
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=
∑

0≤i≤j

zj

(1− z)j+1

(
j

i

)
zi =

∑
j≥0

zj

(1− z)j+1
(1 + z)j

=
1

1− z
1

1− z(1 + z)
1− z

=
1

1− 2z − z2
.

This is the generating function of the numbers Pn+1.

Now we give a double sum for the Tribonacci numbers:

Theorem 8. For n ≥ 0,

Tn =
∑

0≤j≤i≤n

(
n− i
i− j

)(
i− j
j

)
.

Proof. Consider∑
n≥0

Tnz
n =

∑
0≤j≤i≤n

zn

(
n− i
i− j

)(
i− j
j

)
=
∑

0≤j≤i

zi

(
i− j
j

)∑
h≥0

zh

(
h

i− j

)

=
∑

0≤j≤i

zi

(
i− j
j

)
zi−j

(1− z)i−j+1
=
∑
j≥0

∑
h≥0

zh+j

(
h

j

)
zh

(1− z)h+1
.

Let t =
z2

1− z
, and we continue∑

n≥0

Tnz
n =

1
1− z

∑
0≤j

zj
∑
h≥0

(
h

j

)
th =

1
1− z

∑
0≤j

zj tj

(1− t)j+1

=
1

1− z
1

1− t
1

1− zt

1− t

=
1

1− z
1

1− t− zt

=
1

1− z
1

1− z2

1− z
− z3

1− z

=
1

1− z − z2 − z3
,

which is the generating function of the Tribonacci numbers, as expected. So the
proof is complete.

By using the same proof method as in Theorem 8, we get a more general result:

Theorem 9. For n > 0,

f (k)
n =

∑
0≤ik≤···≤i1≤n

(
n− i1
i1 − i2

)(
i1 − i2
i2 − i3

)
· · ·
(
ik−1 − ik

ik

)
where f (k)

n is the n-th generalized order-k Fibonacci number.
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