SOME DOUBLE BINOMIAL SUMS RELATED TO FIBONACCI,

 PELL AND GENERALIZED ORDER- k FIBONACCI NUMBERSEMRAH KILIÇ AND HELMUT PRODINGER

Abstract

We consider some double binomial sums related with the Fibonacci, Pell numbers and a multiple binomial sums related with the generalized order- k Fibonacci numbers. The Lagrange-Bürmann formula and other known techniques are used to prove them.

1. Introduction

The generating function of the Fibonacci numbers F_{n} is

$$
\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{x}{1-x-x^{2}}
$$

Similarly, the generating function of the Pell numbers P_{n} is

$$
\sum_{n=0}^{\infty} P_{n} x^{n}=\frac{x}{1-2 x-x^{2}} .
$$

The generalized order- k Fibonacci numbers $f_{n}^{(k)}$ are defined by

$$
f_{n}^{(k)}=\sum_{i=1}^{k} f_{n-i}^{(k)} \quad \text { for } \quad n>k
$$

with initial conditions $f_{j}^{(k)}=2^{j-1}$ for $1 \leq j \leq k$.
For example, when $k=3$, the generalized Fibonacci numbers $f_{n}^{(3)}$ are reduced to the Tribonacci numbers T_{n} defined by

$$
T_{n}=T_{n-1}+T_{n-2}+T_{n-3}
$$

with $T_{1}=1, T_{2}=2$ and $T_{3}=4$, for $n>3$.
For these number sequences, we recall the combinatorial representations due to $[2,3,5]$:

$$
\begin{align*}
\sum_{i=1}^{n}\binom{n-i}{i-1} & =F_{n}, \tag{1.1}\\
\sum_{i=1}^{\lfloor(n-1) / 2\rfloor}\binom{n}{2 i+1} 2^{r} & =P_{n}, \tag{1.2}\\
\sum_{i=0}^{n} \sum_{j=0}^{n}\binom{n-i}{j}\binom{n-j}{i} & =F_{2 n+3} . \tag{1.3}
\end{align*}
$$

[^0]Among the formulas (1.1-1.3), the last formula seems to be different from first two identities just above since it includes double sums, see [2]. The authors of the above cited papers use a combinatorial approach to prove these results. For many similar identities, we refer to [6].

In this paper, we shall derive some new double binomial sums related with the Fibonacci, Pell and generalized order- k Fibonacci numbers and then use the LagrangeBürmann formula and well known other techniques to prove them.

The Lagrange-Bürmann formula is a very useful tool if one knows a series expansion for $y(x)$ but would like to obtain the series for x in terms of y. We recall the formula (for details see $[1,4]$): Suppose a series for y in powers of x is required when $y=x \Phi(y)$. Assume that Φ is analytic in a neighborhood of $y=0$ with $\Phi(0) \neq 0$. Then

$$
x=y / \Phi(y)=\sum_{n=1}^{\infty} a_{n} y^{n}, \quad a_{1} \neq 0
$$

Then the two (equivalent) version of the Lagrange(-Bürmann) inversion formula can be written as

$$
F(y)=F(0)+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}\left[\frac{d^{n-1}}{d y^{n-1}}\left(F^{\prime}(y) \Phi^{n}(y)\right)\right]_{x=0}
$$

or

$$
\frac{F(y)}{1-x \Phi^{\prime}(y)}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\left[\frac{d^{n}}{d y^{n}}\left(F(y) \Phi^{n}(y)\right)\right]_{x=0}
$$

We would like to rephrase this using the notation of the "coefficient-of" operator:

$$
\frac{F(y)}{1-x \Phi^{\prime}(y)}=\sum_{n=0}^{\infty}\left[y^{n}\right]\left(F(y) \Phi^{n}(y)\right) \cdot x^{n}
$$

we will use it in this form.

2. Double Binomial Sums

We start with a result related to Fibonacci numbers:
Theorem 1. For $n>0$,

$$
F_{4 n-1}=\sum_{0 \leq i, j \leq n}\binom{n+i}{2 j}\binom{n+j}{2 i}
$$

Proof. We start from

$$
\left[y^{2 j}\right](1+y)^{n+i}=\binom{n+i}{2 j}
$$

and compute

$$
\begin{aligned}
S & =\sum_{i=0}^{n}(1+y)^{n+i}\binom{n+j}{2 i} \\
& =\sum_{i \geq 0}(1+y)^{n+i / 2}\binom{n+j}{i} \frac{1+(-1)^{i}}{2} \\
& =\left[(1+\sqrt{1+y})^{j+n}+(1-\sqrt{1+y})^{j+n}\right] \frac{(1+y)^{n}}{2}
\end{aligned}
$$

here the desired sum takes the form:

$$
\begin{aligned}
& \sum_{j=0}^{n}\left[y^{2 j}\right]\left[(1+\sqrt{1+y})^{j+n}+(1-\sqrt{1+y})^{j+n}\right] \frac{(1+y)^{n}}{2} \\
& =\sum_{j \geq 0}\left[y^{2 j}\right]\left[(1+\sqrt{1+y})^{j+n}+(1-\sqrt{1+y})^{j+n}\right] \frac{(1+y)^{n}}{2} \\
& =\sum_{j \geq 0}\left[y^{2 j}\right](1+\sqrt{1+y})^{j+n} \frac{(1+y)^{n}}{2}+\sum_{j \geq 0}\left[y^{2 j}\right](1-\sqrt{1+y})^{j+n} \frac{(1+y)^{n}}{2} \\
& =\sum_{j \geq 0}\left[y^{j}\right](1+\sqrt{1+y})^{j / 2+n} \frac{(1+y)^{n}}{2} \frac{1+(-1)^{j}}{2}+\sum_{j \geq 0}\left[y^{2 j}\right](1-\sqrt{1+y})^{j+n} \frac{(1+y)^{n}}{2} .
\end{aligned}
$$

Let us consider the first sum:

$$
\sum_{j \geq 0}\left[y^{j}\right](1+\sqrt{1+y})^{j / 2+n}(1+y)^{n}
$$

This is of the form

$$
\sum_{j \geq 0}\left[y^{j}\right] F(y) \Phi(y)^{j}
$$

with

$$
F(y)=(1+\sqrt{1+y})^{n}(1+y)^{n} \quad \text { and } \quad \Phi(y)=\sqrt{1+\sqrt{1+y}}
$$

The Lagrange-Bürmann formula can now be applied to this sum. The general formula is given by

$$
\sum_{j \geq 0}\left[y^{j}\right] F(y) \Phi(y)^{j} \cdot x^{j}=\frac{F(y)}{1-x \Phi^{\prime}(y)}
$$

We need the instance $x=1$ here, and the variables x and y are linked via $y=x \Phi(y)$. Notice that $\Phi(y)$ must be a power series in y with a constant term different from zero. Therefore

$$
\begin{array}{rlrl}
y & =\frac{1+\sqrt{5}}{2}, & F(\alpha)=\left(\frac{7+3 \sqrt{5}}{2}\right)^{n}, \\
\Phi^{\prime}(\alpha) & =\frac{3-\sqrt{5}}{8}, & & \frac{1}{1-\Phi^{\prime}(\alpha)}=2\left(1-\frac{1}{\sqrt{5}}\right) .
\end{array}
$$

So our evaluation is

$$
2\left(1-\frac{1}{\sqrt{5}}\right)\left(\frac{7+3 \sqrt{5}}{2}\right)^{n}
$$

The second term is

$$
\sum_{j \geq 0}\left[y^{j}\right](1+\sqrt{1+y})^{j / 2+n+1 / 2}(1+y)^{n}(-1)^{j}
$$

This is the instance $x=-1$, which translates to $y=-1$ and so the third term is

$$
\frac{F(-1)}{1+\Phi^{\prime}(-1)}=0 .
$$

The last sum is

$$
\begin{aligned}
\sum_{j \geq 0}\left[y^{2 j}\right](1-\sqrt{1+y})^{j+n}(1+y)^{n} & =\sum_{j \geq 0}\left[y^{2 j}\right] y^{j+n}\left(\frac{1-\sqrt{1+y}}{y}\right)^{j+n}(1+y)^{n} \\
& =\sum_{j \geq 0}\left[y^{j}\right] y^{n}\left(\frac{1-\sqrt{1+y}}{y}\right)^{j+n}(1+y)^{n}
\end{aligned}
$$

This is again of the form

$$
\sum_{j \geq 0}\left[y^{j}\right] F(y) \Phi(y)^{j}
$$

with

$$
F(y)=(1-\sqrt{1+y})^{n}(1+y)^{n} \quad \text { and } \quad \Phi(y)=\frac{1-\sqrt{1+y}}{y}
$$

We need the instance $x=1$ here, and the link is

$$
y=x\left(\frac{1-\sqrt{1+y}}{y}\right),
$$

which means

$$
y=\frac{1-\sqrt{5}}{2}, \quad F(\beta)=\left(\frac{7-3 \sqrt{5}}{2}\right)^{n} \quad \text { and } \quad \frac{1}{1-\Phi^{\prime}(\alpha)}=1+\frac{1}{\sqrt{5}} .
$$

So our evaluation is

$$
\left(1+\frac{1}{\sqrt{5}}\right)\left(\frac{7-3 \sqrt{5}}{2}\right)^{n} .
$$

Altogether
$\left[\left(1-\frac{1}{\sqrt{5}}\right)\left(\frac{7+3 \sqrt{5}}{2}\right)^{n}+\left(1+\frac{1}{\sqrt{5}}\right)\left(\frac{7-3 \sqrt{5}}{2}\right)^{n}\right] \frac{1}{2}=\frac{\alpha^{4 n-1}-\beta^{4 n-1}}{\sqrt{5}}=F_{4 n-1}$,
as desired.
Theorem 2. For $n>0$,

$$
F_{4 n+1}=\sum_{1 \leq i, j \leq n+1}\binom{n+i}{2 j-1}\binom{n+j}{2 i-1} .
$$

Proof. Since

$$
\left[y^{2 j-1}\right](1+y)^{n+i}=\binom{n+i}{2 j-1}
$$

and

$$
\begin{aligned}
S & =\sum_{i=1}^{n+1}(1+y)^{n+i}\binom{n+j}{2 i-1} \\
& =\sum_{i \geq 0}(1+y)^{n+(i+1) / 2}\binom{n+j}{i} \frac{1-(-1)^{i}}{2} \\
& =\left[(1+\sqrt{1+y})^{j+n}-(1-\sqrt{1+y})^{j+n}\right] \frac{(1+y)^{n+1 / 2}}{2}
\end{aligned}
$$

here the desired sum takes the form:

$$
\begin{aligned}
& \sum_{j=1}^{n+1}\left[y^{2 j-1}\right]\left[(1+\sqrt{1+y})^{j+n}-(1-\sqrt{1+y})^{j+n}\right] \frac{(1+y)^{n+1 / 2}}{2} \\
& =\sum_{j \geq 1}\left[y^{2 j-1}\right]\left[(1+\sqrt{1+y})^{j+n}-(1-\sqrt{1+y})^{j+n}\right] \frac{(1+y)^{n+1 / 2}}{2} \\
& =\sum_{j \geq 1}\left[y^{2 j-1}\right](1+\sqrt{1+y})^{j+n} \frac{(1+y)^{n+1 / 2}}{2} \\
& \quad-\sum_{j \geq 1}\left[y^{2 j-1}\right](1-\sqrt{1+y})^{j+n} \frac{(1+y)^{n+1 / 2}}{2} \\
& =\sum_{j \geq 0}\left[y^{j}\right]\left[(1+\sqrt{1+y})^{j / 2+n+1 / 2}\right] \frac{(1+y)^{n+1 / 2}}{2} \frac{1-(-1)^{j}}{2} \\
& \quad-\sum_{j \geq 1}\left[y^{2 j-1}\right](1-\sqrt{1+y})^{j+n} \frac{(1+y)^{n+1 / 2}}{2} .
\end{aligned}
$$

Let us start with one term in the above sum:

$$
\sum_{j \geq 0}\left[y^{j}\right](1+\sqrt{1+y})^{j / 2+n+1 / 2}(1+y)^{n+1 / 2}
$$

This is of the form

$$
\sum_{j \geq 0}\left[y^{j}\right] F(y) \Phi(y)^{j}
$$

with

$$
F(y)=(1+\sqrt{1+y})^{n+1 / 2}(1+y)^{n+1 / 2} \quad \text { and } \quad \Phi(y)=\sqrt{1+\sqrt{1+y}}
$$

This is the instance $x=1$, which translates to

$$
y=\frac{1+\sqrt{5}}{2}, \quad F(\alpha)=\alpha^{4 n+2}
$$

and

$$
\Phi^{\prime}(\alpha)=\frac{3-\sqrt{5}}{8}, \quad \frac{1}{1-\Phi^{\prime}(\alpha)}=2\left(1-\frac{1}{\sqrt{5}}\right) .
$$

So our evaluation is:

$$
2\left(1-\frac{1}{\sqrt{5}}\right) \alpha^{4 n+2}
$$

The second term is

$$
\sum_{j \geq 0}\left[y^{j}\right](1+\sqrt{1+y})^{j / 2+n+1 / 2}(1+y)^{n+1 / 2}(-1)^{j}
$$

This is the instance $x=-1$, which translates to $y=-1$ and so the second term is

$$
\frac{F(-1)}{1+\Phi^{\prime}(-1)}=0
$$

Finally the last term is of the form:

$$
\begin{aligned}
& \sum_{j \geq 1}\left[y^{2 j-1}\right](1-\sqrt{1+y})^{j+n}(1+y)^{n+1 / 2} \\
& \quad=\sum_{j \geq 1}\left[y^{2 j-1}\right] y^{j+n}\left(\frac{1-\sqrt{1+y}}{y}\right)^{j+n}(1+y)^{n+1 / 2} \\
& \quad=\sum_{j \geq 0}\left[y^{j}\right] y^{n+1}\left(\frac{1-\sqrt{1+y}}{y}\right)^{j+n}(1+y)^{n+1 / 2} .
\end{aligned}
$$

This is of the form:

$$
\sum_{j \geq 0}\left[y^{j}\right] F(y) \Phi(y)^{j}
$$

with

$$
F(y)=(1-\sqrt{1+y})^{n}(1+y)^{n+\frac{1}{2}} y \quad \text { and } \quad \Phi(y)=\frac{1-\sqrt{1+y}}{y} .
$$

This is the instance $x=1$, which translates to $y=\beta=\frac{1-\sqrt{5}}{2}$. Thus

$$
F(\beta)=-\beta^{4 n+2}, \quad \Phi^{\prime}(\beta)=-\frac{1-\sqrt{5}}{4}, \quad \frac{F(\beta)}{1-\Phi^{\prime}(\beta)}=-\left(1+\frac{1}{\sqrt{5}}\right) \beta^{4 n+2}
$$

So our evaluation is

$$
\left[\left(1-\frac{1}{\sqrt{5}}\right) \alpha^{4 n+2}+\left(1+\frac{1}{\sqrt{5}}\right) \beta^{4 n+2}\right] \frac{1}{2}=F_{4 n+1}
$$

as claimed.

Theorem 3. For $n>0$,

$$
\begin{aligned}
F_{4 n} & =\sum_{i=0}^{n} \sum_{j=0}^{n}\binom{n+i}{2 j-1}\binom{n+j}{2 i}, \\
F_{4 n-3} & =\sum_{i=0}^{n} \sum_{j=0}^{n}\binom{n+i}{2 j+1}\binom{n+j}{2 i+1} .
\end{aligned}
$$

Again by using the Lagrange-Bürmann formula, Theorem 3 can be similarly proved.

Theorem 4. For $n>0$,

$$
\frac{F_{2 n+2}+F_{n+1}}{2}=\sum_{0 \leq i, j \leq n}\binom{n-i}{2 j}\binom{n-2 j}{i} .
$$

Proof. First, we replace i by $n-i$ and get

$$
\sum_{0 \leq 2 j \leq i \leq n}\binom{i}{2 j}\binom{n-2 j}{i-2 j} .
$$

Now we compute the generating function of it:

$$
\begin{aligned}
& \sum_{n \geq 0} z^{n} \sum_{0 \leq 2 j \leq i \leq n}\binom{i}{2 j}\binom{n-2 j}{i-2 j}=\sum_{0 \leq 2 j \leq i}\binom{i}{2 j} \frac{z^{i}}{(1-z)^{i+1-2 j}} \\
& \quad=\sum_{j \geq 0} \frac{z^{2 j}(1-z)^{2 j}}{(1-2 z)^{1+2 j}}=\frac{1-2 z}{\left(1-z-z^{2}\right)\left(1-3 z+z^{2}\right)} \\
& \quad=\frac{1}{2} \frac{1}{1-z-z^{2}}+\frac{1}{2} \frac{1}{1-3 z-z^{2}},
\end{aligned}
$$

which is the generating function of the numbers $\left(F_{2 n+2}+F_{n+1}\right) / 2$.
The following results are similar:
Theorem 5. For $n>0$,

$$
\begin{aligned}
F_{2 n} & =\sum_{i=1}^{n} \sum_{j=1}^{n}\binom{n-i}{j-1}\binom{n-j}{i-1}, \\
F_{2 n-1} & =\sum_{0 \leq j \leq i \leq n}\binom{n}{i-j}\binom{n-i}{j} .
\end{aligned}
$$

Theorem 6. For $n>0$,

$$
\begin{equation*}
F_{2 n}+1=\sum_{i=0}^{n} F_{2 i-1}=\sum_{0 \leq i \leq j \leq n}\binom{n-i}{j}\binom{j}{2 i} \tag{2.1}
\end{equation*}
$$

Proof. Multiplying the right hand side of (2.1) by z^{n} and summing over n, we get

$$
\begin{aligned}
S & =\sum_{n \geq 0} z^{n} \sum_{0 \leq i \leq j \leq n}\binom{n-i}{j}\binom{j}{2 i}=\sum_{0 \leq i \leq j} \sum_{h \geq 0} z^{h+i+j}\binom{h+j}{j}\binom{j}{2 i} \\
& =\sum_{0 \leq i \leq j}\binom{j}{2 i} z^{i+j} \sum_{h \geq 0} z^{h}\binom{h+j}{j}=\sum_{0 \leq 2 i \leq j}\binom{j}{2 i} z^{i+j} \frac{1}{(1-z)^{j+1}} \\
& =\sum_{i \geq 0} \frac{z^{3 i}}{(1-2 z)^{2 i+1}}=\frac{1-2 z}{(1-z)\left(1-3 z+z^{2}\right)}=\frac{z}{1-3 z+z^{2}}+\frac{1}{1-z},
\end{aligned}
$$

which is the generating function of the numbers $F_{2 n}+1$.
For the Pell numbers, we give the following result:
Theorem 7. For $n \geq 0$,

$$
\begin{equation*}
P_{n+1}=\sum_{0 \leq i \leq j \leq n}\binom{n-i}{j}\binom{j}{i} . \tag{2.2}
\end{equation*}
$$

Proof. Multiplying the right hand side of (2.2) by z^{n} and summing over n, we get

$$
\begin{aligned}
S & =\sum_{n \geq 0} z^{n} \sum_{0 \leq i \leq j \leq n}\binom{n-i}{j}\binom{j}{i}=\sum_{0 \leq i \leq j} \sum_{h \geq 0} z^{h+i+j}\binom{h+j}{j}\binom{j}{i} \\
& =\sum_{0 \leq i \leq j}\binom{j}{i} z^{i+j} \sum_{h \geq 0} z^{h}\binom{h+j}{j}=\sum_{0 \leq i \leq j}\binom{j}{i} z^{i+j} \frac{1}{(1-z)^{j+1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{0 \leq i \leq j} \frac{z^{j}}{(1-z)^{j+1}}\binom{j}{i} z^{i}=\sum_{j \geq 0} \frac{z^{j}}{(1-z)^{j+1}}(1+z)^{j} \\
& =\frac{1}{1-z} \frac{1}{1-\frac{z(1+z)}{1-z}}=\frac{1}{1-2 z-z^{2}} .
\end{aligned}
$$

This is the generating function of the numbers P_{n+1}.
Now we give a double sum for the Tribonacci numbers:
Theorem 8. For $n \geq 0$,

$$
T_{n}=\sum_{0 \leq j \leq i \leq n}\binom{n-i}{i-j}\binom{i-j}{j} .
$$

Proof. Consider

$$
\begin{aligned}
\sum_{n \geq 0} T_{n} z^{n} & =\sum_{0 \leq j \leq i \leq n} z^{n}\binom{n-i}{i-j}\binom{i-j}{j}=\sum_{0 \leq j \leq i} z^{i}\binom{i-j}{j} \sum_{h \geq 0} z^{h}\binom{h}{i-j} \\
& =\sum_{0 \leq j \leq i} z^{i}\binom{i-j}{j} \frac{z^{i-j}}{(1-z)^{i-j+1}}=\sum_{j \geq 0} \sum_{h \geq 0} z^{h+j}\binom{h}{j} \frac{z^{h}}{(1-z)^{h+1}}
\end{aligned}
$$

Let $t=\frac{z^{2}}{1-z}$, and we continue

$$
\begin{aligned}
\sum_{n \geq 0} T_{n} z^{n} & =\frac{1}{1-z} \sum_{0 \leq j} z^{j} \sum_{h \geq 0}\binom{h}{j} t^{h}=\frac{1}{1-z} \sum_{0 \leq j} z^{j} \frac{t^{j}}{(1-t)^{j+1}} \\
& =\frac{1}{1-z} \frac{1}{1-t} \frac{1}{1-\frac{z t}{1-t}}=\frac{1}{1-z} \frac{1}{1-t-z t} \\
& =\frac{1}{1-z} \frac{1}{1-\frac{z^{2}}{1-z}-\frac{z^{3}}{1-z}}=\frac{1}{1-z-z^{2}-z^{3}}
\end{aligned}
$$

which is the generating function of the Tribonacci numbers, as expected. So the proof is complete.

By using the same proof method as in Theorem 8, we get a more general result:
Theorem 9. For $n>0$,

$$
f_{n}^{(k)}=\sum_{0 \leq i_{k} \leq \cdots \leq i_{1} \leq n}\binom{n-i_{1}}{i_{1}-i_{2}}\binom{i_{1}-i_{2}}{i_{2}-i_{3}} \cdots\binom{i_{k-1}-i_{k}}{i_{k}}
$$

where $f_{n}^{(k)}$ is the n-th generalized order-k Fibonacci number.

References

[1] G. E. Andrews, R. Askey and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
[2] A. T. Benjamin and J. J. Quinn, Proofs That Really Count, Mathematical Association of America, 2003.
[3] J. Ercolano, Matrix generator of Pell sequence, Fibonacci Quart. 17 (1) (1979), 71-77.
[4] P. Henrici, Applied and computational complex analysis. Vol. 1. John Wiley \& Sons, Inc., New York, 1988.
[5] A. F. Horadam, Pell identities, Fibonacci Quart. 9 (3) (1971), 245-252, 263.
[6] R. Knott, Fibonacci and Golden Ratio Formulae, http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/.
[7] J. Riordan, Combinatorial Identities, John Wiley \& Sons, Inc., New York, 1968.
TOBB University of Economics and Technology, Mathematics Department, 06560 Ankara Turkey

E-mail address: ekilic@etu.edu.tr
Department of Mathematics, University of Stellenbosch 7602 Stellenbosch South Africa

E-mail address: hproding@sun.ac.za

[^0]: 2000 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
 Key words and phrases. Fibonacci numbers, generating functions, Lagrange-Bürmann formula.

