SOME DOUBLE BINOMIAL SUMS RELATED TO FIBONACCI,
PELL AND GENERALIZED ORDER-t FIBONACCI NUMBERS

EMRAH KILIC AND HELMUT PRODINGER

ABSTRACT. We consider some double binomial sums related with the Fibonacci,
Pell numbers and a multiple binomial sums related with the generalized order-k
Fibonacci numbers. The Lagrange-Blirmann formula and other known tech-
niques are used to prove them.

1. INTRODUCTION

The generating function of the Fibonacci numbers F, is

> T

g Foa"= ——M—.
" 1—2—22

n=0

Similarly, the generating function of the Pell numbers P, is

T
ZPI 1—2z — a2

The generalized order-k Fibonacci numbers fn are defined by
(k) Z f7 for n>k

with initial conditions fj( =2"1for1<j<k.
For example, when k = 3, the generalized Fibonacci numbers f,sg) are reduced
to the Tribonacci numbers T;, defined by

T,=T, 1+Th 2+ Tn—3

with 77 =1, T, = 2 and T3 = 4, for n > 3.
For these number sequences, we recall the combinatorial representations due to
[2, 3, 5]:

> (i71) = L)

[(n—1)/2] n
> ( ' )T:P“’ (1:2)
1
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Among the formulas (1.1-1.3), the last formula seems to be different from first two
identities just above since it includes double sums, see [2]. The authors of the above
cited papers use a combinatorial approach to prove these results. For many similar
identities, we refer to [6].

In this paper, we shall derive some new double binomial sums related with the Fi-
bonacci, Pell and generalized order-k Fibonacci numbers and then use the Lagrange-
Biirmann formula and well known other techniques to prove them.

The Lagrange-Biirmann formula is a very useful tool if one knows a series ex-
pansion for y(z) but would like to obtain the series for x in terms of y. We recall
the formula (for details see [1, 4]): Suppose a series for y in powers of z is required
when y = 2®(y). Assume that ® is analytic in a neighborhood of y = 0 with
®(0) # 0. Then

r=1y/0(y Zany, ar # 0.

Then the two (equivalent) version of the Lagrange(-Biirmann) inversion formula
can be written as

PO = PO+ 3 5 [ (P e )

x=0
or
= — | —(F(y)®"
1-— xq)’(y) ; n! dyn( (y) (y)) o
We would like to rephrase this using the notation of the “coefficient—of” operator:
F(y) -
T 20'(y) ;::O[y J(Fy)@"(y) - 2"

we will use it in this form.

2. DOUBLE BINOMIAL SUMS
We start with a result related to Fibonacci numbers:
Theorem 1. Forn >0,
n+1i\[/n+j
Fipq1 = .
w3 () ()
0<i,5<n

Proof. We start from

)1 +y)" " = (n;; z)

and compute

s=> o ("))

=0

— Z(l )il (”j]) #

i>0

{(1—&-\/1—&- )Hn ( \/1+y)j+n](1+2y>n,
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here the desired sum takes the form:

Sy (v |

=0

:ZW] [(1+m)””+ (1m)j+n} %

- S (T S 2ﬂ< REDME

=3l (14 vTE) ”;’) L Uy (1 i)

Let us consider the first sum:
j/2+n
Sy (1 VI ) (1+y)"
j=0
This is of the form

> WIF@)e(y)

j=0
with

(1+\/1+) 1+y)" and () =/1+/I+y.

The Lagrange-Biirmann formula can now be applied to this sum. The general
formula is given by

i i Pl
J;[y IPWRGY o’ = -

We need the instance x = 1 here, and the variables x and y are linked via y = 2®(y).

Notice that ®(y) must be a power series in y with a constant term different from
zero. Therefore

y:

LB k= (22

— 1 1
&'(a) = 2= V5 :2(1_).
So our evaluation is
2(1-5) ()
V5 2
The second term is

S (1 V) ey

Jj=0
This is the instance x = —1, which translates to y = —1 and so the third term is

F(=1)

—— =0.
1+ @'(—1)
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The last sum 1is

S (1 VA9 = Sl (Y

i20 20 4
o f(1=vV1+y It n
= Wy () (1+y)".
>0 Y
This is again of the form
> W) ®(y)
j=0
with
n 1-v1+y
Fy) = (1 - \/1+y) (1+y)" and ®(y) = Yy
We need the instance x = 1 here, and the link is
1—-+/1
Y=z ( vﬂ) 7
)
which means
1-+/5 7-3vV5\" 1 1
Y= \[7 F(p) = 7f and —— =14 —.
2 2 1 -9 (a) V5

So our evaluation is

(1 1 ) (7 - 3\/5) .
\/5 2
Altogether

() (225 (o ) (3 -2

as desired. 1

Theorem 2. Forn >0,
n+1 n+j
F = E .
T e <2j - 1> (22' - 1>
<t,j<n+1

Proof. Since

Ay = (2727:21)

and
n+1 .
i M+
S — 1 n—+1
>+ (55)

L g () L C

)
i>0

ey
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here the desired sum takes the form:

ntl n+1/2

; s [(14-\/?) ( m)j+n:| %
o () (v

§>1
n+1/2
= S (1 ) T
j=1
L j+n (1 + n+1/2
DS T (Ve IR
§>1
) 3/24n+1/2] (1 4 ) /21 — (—1)J
31 )] = G
j=0
o j+n 1+ n+1/2
S ¥ (1—\/1+y) %
§>1

Let us start with one term in the above sum:

S i)

720

1+ y)n+1/2.

This is of the form

> W1 (y)®(y)

j=>0
with

n+1/2
(1—1—\/1—1— ) (1+y)"2 and ®(y) =\/1++/1+v.

This is the instance x = 1, which translates to

1+5 "
=—3 F(a) = a2
and
, 3—5 1 1
Y@ =52 =21 75)

So our evaluation is:

1
2(1-—=)a**2
( \/5>

The second term is

j/2+n+1/2 .
> (1+ V1) Ly Ry,
Jj=0
This is the instance x = —1, which translates to y = —1 and so the second term is

F(=1)

—— =0.
1+ @'(—1)
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Finally the last term is of the form:

Z[QQj_l] (1 — M)jJrn 1+ y)n+1/2

j>1
. . 1 _ /1 j+n
= WPy (ﬂ/) (1 +y)" /2

i>1 y
i1, m 1- \% 1+ Jn n
= [yt (y) (1+y)"FH/2
>0 4
This is of the form:
> WIF )y
j=0
with
" n+i 1- V I+
F(y):(l—\/l—i-y) (1+y)" T2y and ®(y) = " v

This is the instance z = 1, which translates to y = 8 = ==5*2. Thus

1-+5 F(B) L\ Lang2

F(B)=-p""2, @'(8) =

So our evaluation is

as claimed. 1

Theorem 3. Forn >0,

Fe=2 3 (57 ('5)

i=0 j=0
" & n+1 n+j
Fip_3 = .
n=s ;;O(zj+1)<2i+1)

Again by using the Lagrange-Biirmann formula, Theorem 3 can be similarly
proved.

Theorem 4. Forn >0,
F2n+2+Fn+1_ Z n—1i\/(n—2j
2 L 2j i )
0<4,j<n

Proof. First, we replace ¢ by n — ¢ and get

> ()05)
0<2j<i<n 2j) \i—=2j
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Now we compute the generating function of it:

1\ (n—2j i 5
oo ()0IH) =% ()i
S0 oemiien N2/ N\1=25) (L2 \2)) (1 2)H
-y 22 (1= 2)% 1-2z
=

= 1—-22)1420 (1 — 2z —22)(1 — 32z + 22)
1 1 +1 1
21—2—22 21—-3z-22

which is the generating function of the numbers (Fay, 10 + Fri1)/2. 1

The following results are similar:

Theorem 5. Forn > 0,
- n—i n—j
Fn: )
»=3:3 () (51)

n n—1
3 ()
0<j<i<n JINI

Theorem 6. Forn > 0,
= n—1i\(j
F+1= Fo 1 = . - 2.1
2n T Z 2i—1 Z ( j ) (21) (2.1)
=0 0<i<j<n

Proof. Multiplying the right hand side of (2.1) by 2™ and summing over n, we get

s=x 3 ()62 (7))
> <2i>zi+j2zh<’l:~’> - > (D)

0<i<j h>0 0<2i<j

P 1—2221‘*‘1_(l—z)(1—3z—|—22)_1—32+z2 1—2’
which is the generating function of the numbers Fy, + 1.

For the Pell numbers, we give the following result:

Proof. Multiplying the right hand side of (2.2) by z™ and summing over n, we get

g 2 (90280

n>0 0<i<j<n 0<i<j h>0

-2 )z () - 2 ()

0<i<y

Theorem 7. Forn >0,
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-3 () S

0<i<j 7>0

1 1 7 1

’1—z1_z(1+z) 12222
1—2z

This is the generating function of the numbers P, 1. |

Now we give a double sum for the Tribonacci numbers:

n- > (20()
o<j<i<n N I/N T
Proof. Consider

. L=\ [(i—j i—] Wl h
e B0 B IR
n>0 0<j<i<n t=J J 0<j<i J h>0 t=J

it i (B o
B G e D DD DR () ey

0<j<i j>0h>0

Theorem 8. Forn >0,

and we continue

1 . h 1 . ti
Il

n>0 0<j  h>0
1 1 1 1 1
Cl-zl-ty 2t 1-z1l-t-—zt
1—1¢
1 1 B 1
T 1-2 22 23 1—z—22—2%
11—z 1-z

which is the generating function of the Tribonacci numbers, as expected. So the
proof is complete. I

By using the same proof method as in Theorem 8, we get a more general result:

Theorem 9. Forn >0,

11 — 1 2 — 1 2
0<ip<<ip<n N1 T2/ N2 k

where fr(Lk) is the n-th generalized order-k Fibonacci number.
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